if a+b+c= 9 and ab+ bc+ ca= 26 then the value of a3+b3+c3-3abc is
Answers
Answered by
24
▪︎Given:-
- a + b + c = 9
- ab + bc + ac = 26
════◄••❀••►════
▪︎To Find:-
- a³ + b³ + c³ - 3abc
════◄••❀••►════
▪︎Formula Used:-
- ( a + b + c)² = a² + b² + c² + 2 ( ab + bc + ca )
- a³ + b³ + c³ - 3abc = ( a + b + c ) ((a² + b² + c²) -( ab + bc + ca))
════◄••❀••►════
▪︎Solution:-
➥ By using the Formula
( a + b + c)² = a² + b² + c² + 2 ( ab + bc + ca )
➥ Putting given values in Formula ;
➟ (9)² = a² + b² + c² + 2(26)
➥ Solving the equation to get the value of (a² + b² + c²)
➟ 81 = a² + b² + c² + 52
➟ 81 - 52 = a² + b² + c²
➟ a² + b² + c² = 29 ----- eq.1
════◄••❀••►════
➥ Now,
By using the Formula
a³ + b³ + c³ - 3abc = ( a + b + c ) ((a² + b² + c²) -( ab + bc + ca))
➥ Putting the given values and eq. 1 in Formula
➟ a³ + b³ + c³ - 3abc = 9 × (29 - 26)
➟ a³ + b³ + c³ - 3abc = 9 × 3
➟ a³ + b³ + c³ - 3abc = 27
Hence the value of a³ + b³ + c³ - 3abc is 27.
════◄••❀••►════
▪︎Answer:-
• a³ + b³ + c³ - 3abc = 27.
════◄••❀••►════
Similar questions