if a+b+c =9 and ab+bc+ca = 27, then
A square+B square+C square= ?
A 35
B 58
C 21
D None of these
Answers
Answered by
1
Answer: 27
Step-by-step explanation:
A+B+C=9
AB+BC+CA=27
Using identity (A+B+C)whole square ,
(A+B+C)square = A Square+ B squate +C square + 2AB +2BC +2CA
(A+B+C) square - 2 ( AB + BC + CA) = A square + B square + C square
Put a+b+c =9 and ab + bc +ca =27
(9 )square -2 (27) = A square + B square+ C square
=81-54
=27
Answered by
14
Given:-
a+b+c=9
ab+bc+ca=27
To find:-
Value of a²+b²+c²
Solution:-
By squaring both sides in equation,a+b+c=9,we get-----
=>(a+b+c)²=(9)²
We know that (a+b+c)²=a²+b²+c²+2ab+2bc+2ca
=>a²+b²+c²+2(ab+bc+ca)=81
=>a²+b²+c²+2(27)=81
=>a²+b²+c²+54=81
=>a²+b²+c²=81-54
=>a²+b²+c²=27
Thus,value of a²+b²+c² is 27.
Hence,correct option is D.
Similar questions