If a+b+c=9 and ab+bc+ca=40.find a^2+b^2+c^2
Answers
Answered by
5
a^2 + b^2 + c^2 = ?
using: (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
a^2 + b^2 + c^2 = 9^2 - 2(40)
= 81 - 80
= 1
Hope This Helps :)
using: (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
a^2 + b^2 + c^2 = 9^2 - 2(40)
= 81 - 80
= 1
Hope This Helps :)
Answered by
3
Given, a + b + c = 9 and ab + bc + ca = 40
We know that,
(a + b + c)2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca
⇒ a 2 + b 2 + c 2 = (a + b + c)2 – 2 (ab + bc + ca)
⇒ a 2 + b 2 + c 2 = (9)2 – 2 × 40 = 81 – 80 = 1 [a + b + c = 9] and[ ab + bc + ca = 40]
Thus, the value of a 2 + b 2 + c 2 is 1.
If you like it please tap on brainlist. ...
We know that,
(a + b + c)2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca
⇒ a 2 + b 2 + c 2 = (a + b + c)2 – 2 (ab + bc + ca)
⇒ a 2 + b 2 + c 2 = (9)2 – 2 × 40 = 81 – 80 = 1 [a + b + c = 9] and[ ab + bc + ca = 40]
Thus, the value of a 2 + b 2 + c 2 is 1.
If you like it please tap on brainlist. ...
Sathiyanarayanan:
Tq
Similar questions