Math, asked by isha210, 1 year ago

if a+b+c=9 and ab+bc+ca=40,find a square +b sqaure+c square

Answers

Answered by Anonymous
93
Hi there !!

Given,

a + b + c = 9

ab + bc + ca = 40

To find : a² + b² + c²

The following expression matches to the algebraic identity
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac or
(a + b + c)² = a² + b² + c² + 2( ab + bc + ac)

Thus,

(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)

substituting the values,
we have,

9² = a² + b² + c² + 2( 40)

81 = a² + b² + c² + 80

Transposing 80 to LHS,
we have,

81 - 80 = a² + b² + c²

Thus,

a² + b² + c² = 1

Anonymous: :-)(-:
Anonymous: hope helped :-)
Answered by vijay31504
46

(a + b + c)^{2}  = a^{2}  +  {b}^{2}  + c^{2} +  2ab + 2bc+ 2ac \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = {a}^{2}  +  {b}^{2} +  \:{c}^{2}  +  2(ab + bc + ca) \\ given \: ab + bc + ca = 40  \: and \: a + b + c = 9 \\  ({9})^{2} =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(40) \\  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 81 - 80 \\  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 1
I hope it will help you
pls make my answer brainlist
Similar questions