if a+b+c=9 and ab+bc+ca=40,find a square +b sqaure+c square
Answers
Answered by
93
Hi there !!
Given,
a + b + c = 9
ab + bc + ca = 40
To find : a² + b² + c²
The following expression matches to the algebraic identity
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac or
(a + b + c)² = a² + b² + c² + 2( ab + bc + ac)
Thus,
(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
substituting the values,
we have,
9² = a² + b² + c² + 2( 40)
81 = a² + b² + c² + 80
Transposing 80 to LHS,
we have,
81 - 80 = a² + b² + c²
Thus,
a² + b² + c² = 1
Given,
a + b + c = 9
ab + bc + ca = 40
To find : a² + b² + c²
The following expression matches to the algebraic identity
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac or
(a + b + c)² = a² + b² + c² + 2( ab + bc + ac)
Thus,
(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
substituting the values,
we have,
9² = a² + b² + c² + 2( 40)
81 = a² + b² + c² + 80
Transposing 80 to LHS,
we have,
81 - 80 = a² + b² + c²
Thus,
a² + b² + c² = 1
Anonymous:
:-)(-:
Answered by
46
I hope it will help you
pls make my answer brainlist
Similar questions