If a+b+c=9,and ab+bc+ca=40, find a²+b²+c²
Answers
Answered by
1
Answer:
1
Step-by-step explanation:
We know,
(a+b+c)
2
=a
2
+b
2
+c
2
+2(ab+bc+ca)
9
2
=a
2
+b
2
+c
2
+2×40
81=a
2
+b
2
+c
2
+80
a
2
+b
2
+c
2
=1
please mark me as branlist
Answered by
25
Given :-
- Value of a + b + c = 9.
- Value of ab + bc + ca = 40.
To Find :-
- The value of a² + b² + c².
Solution :-
As we know that,
(a + b+ c)² = a² + b² + c² + 2ab + 2bc + 2ac
[ Putting values ]
↪(9)² = a² + b² + c² + 2(ab + bc + ac)
↪81 = a² + b² + c² + 2(40)
↪81 = a² + b² + c² + 80
↪a² + b² + c² = 81 - 80
↪a² + b² + c² = 1
Hence,
- The value of a² + b² + c² is 1.
______________
☀ Verification ☀
(a + b+ c)² = a² + b² + c² + 2ab + 2bc + 2ac
[ Putting values ]
↪(9)² = 1 + 2(ab + bc + ac)
↪81 = 1 + 2(40)
↪81 = 1 + 80
↪81 = 81
Hence verified!!
Similar questions