If a+b+C =9 and ab+bc+ca=40 find a2+b2+c2
Answers
Answered by
0
Hey mate!!
Here's your answer ^-^
(a+b+c)^2 = a^2 + b^2 + c^2 +2(ab + bc + ca)
9^2 = a^2+b^2+c^2 +2*40
81 = a^2+b^2+c^2 + 80
a^2+b^2+c^2 = 81-80
that's 1....
Hope this helps..☺☺
Here's your answer ^-^
(a+b+c)^2 = a^2 + b^2 + c^2 +2(ab + bc + ca)
9^2 = a^2+b^2+c^2 +2*40
81 = a^2+b^2+c^2 + 80
a^2+b^2+c^2 = 81-80
that's 1....
Hope this helps..☺☺
Answered by
0
Answer is 1
a + b + c = 9 and ab + bc + ca = 40
We know that,
(a + b + c)2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca
⇒ a 2 + b 2 + c 2 = (a + b + c)2 – 2 (ab + bc + ca)
⇒ a 2 + b 2 + c 2 = (9)2 – 2 × 40 = 81 – 80 = 1 [a + b + c = 9 and ab + bc + ca = 40]
Thus, the value of a 2 + b 2 + c 2 is 1.
a + b + c = 9 and ab + bc + ca = 40
We know that,
(a + b + c)2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca
⇒ a 2 + b 2 + c 2 = (a + b + c)2 – 2 (ab + bc + ca)
⇒ a 2 + b 2 + c 2 = (9)2 – 2 × 40 = 81 – 80 = 1 [a + b + c = 9 and ab + bc + ca = 40]
Thus, the value of a 2 + b 2 + c 2 is 1.
Similar questions