If a+b+c = 9 and ab + bc + ca = 40, then find a² + b² +c²
Answers
Answered by
1
Answer:
hy
Step-by-step explanation:
Given, a + b + c = 9 and ab + bc + ca = 40
We know that,
(a + b + c)2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca
⇒ a 2 + b 2 + c 2 = (a + b + c)2 – 2 (ab + bc + ca)
⇒ a 2 + b 2 + c 2 = (9)2 – 2 × 40 = 81 – 80 = 1 [a + b + c = 9 and ab + bc + ca = 40]
Thus, the value of a 2 + b 2 + c2 is 1 .
Answered by
0
Answer:
1
Step-by-step explanation:
( a+b+c )^2 = a^2 + b^2 + c^2 + 2( ab +bc +ca )
9^2 = a^2 + b^2 + c^2 + 2( 40 )
81 = a^2 + b^2 + c^2 + 80
a^2 + b^2 + c^2 = 81 - 80
a^2 + b^2 + c^2 = 1
Similar questions