If a + b + c = 9 and AB + BC + CA = 40 then the value of a square + b square + c square
Answers
Answered by
212
a + b + c = 9
ab + bc + ca = 40
To find : a² + b² + c²
The following expression matches to the algebraic identity
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac or
(a + b + c)² = a² + b² + c² + 2( ab + bc + ac)
Thus,
(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
substituting the values,
we have,
9² = a² + b² + c² + 2( 40)
81 = a² + b² + c² + 80
Transposing 80 to LHS,
we have,
81 - 80 = a² + b² + c²
Thus,
a² + b² + c² = 1
Answered by
3
Step-by-step explanation:
hope this answer will help you
plzzzz mark me as brainliest plzzzzzzzzzzz
and also follow me to get best maths answers especially for class 9 and 10 .
☆☆follow me ☆☆
__mathematics__genius
Attachments:
Similar questions