Math, asked by 9brudranimishraf3291, 9 months ago

If a+b+c=9 and ab+bc+ca=40find a²+b²+c²

Answers

Answered by anshsingh23052006
0

Answer:

Step-by-step explanation:

for a²+b²+c²

(a+b+c)²=(9)²

a²+b²+c²+2ab+2bc+2ac=81

a²+b²+c²+40=81

a²+b²+c²=41

Answered by karannnn43
0

(a + b + c) = 9 \\  =  > { (a + b) + (c) )}^{2} =  {9}^{2}  \\  =  >  {(a + b)}^{2}  +  {c}^{2}  + 2c(a + b) = 81 \\  =  >  {a}^{2}  +  {b}^{2}  +  {c}^{2} +  2ab + 2ac + 2bc = 81 \\   =  >  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ac) = 81

Putting the given values,

We get ,

{a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2 \times 40 = 81 \\  =  > {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 81 - 80 \\  =  > {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 1

Similar questions