If a+b+c=9
and ab+ be+ca=23,
then a3 + b3 +c3-3abc =
Answers
Answered by
1
hope it was helpful to you ☺️☺️
mark me brainlist ❣️❣️
Attachments:
Answered by
0
Answer:
108
Step-by-step explanation:
Given,
a + b + c = 9
ab + bc + ca = 23
We know that, ( a + b + c )³ = ( a + b + c ) ( a² + b² + c² - ( ab + bc + ca ) )
Using the algebraic identity, ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
⇒ a² + b² + c² + 2( ab + bc + ca ) = ( 9 )²
a² + b² + c² + 2( 23 ) = 81
a² + b² + c² + 46 = 81
a² + b² + c² = 81 -46
a² + b² + c² = 35
Now finding out the value of a³ + b³ + c³ - 3abc
⇒a³ + b³ + c³ - 3abc = ( a + b + c ) ( (a² + b² + c²) - ( ab + bc + ca ) )
a³ + b³ + c³ - 3abc = ( 9 ) [ ( 35 ) - ( 23 ) ]
a³ + b³ + c³ - 3abc = ( 9 ) ( 12 )
a³ + b³ + c³ - 3abc = 108
∴ The value of a³ + b³ + c³ - 3abc is 108.
[ Main points are written in bold form and underlined for your better understanding ]
Similar questions