if A+B+C=90 then sinA/2×sin{(180-B-C)/2} + cosA/2×sin(B+C)/2. = ?
Answers
Answer:
A+B+C = 90
sinA/2 sin((180-B-C)/2) + cosA/2 sin(B+C)/2
sinA/2 sin(90-(B+C)/2) + cosA/2 sin(B+C)/2
sinA/2 cos(B+C)/2 + cosA/2 sin(B+C)/2
sin((A+B+C)/2)
sin(90/2)
sin45°
1/√2
Answer:
Step-by-step explanation:
SinA/2 * Sin [(180-B-C)/2] + CosA/2 * Sin(B+C)/2
Sin [(180-B-C)/2] | Sin(B+C/2)
A + B + C = 180 | A + B + C = 180
A = 180 - (B+C) | B + C = 180 - A
A/2 = [180 - (B+C)] / 2 | B+C/2 = (180 - A)/2
Taking Sine on both sides, | Taking Sine on both sides,
SinA/2 = Sin[ (180 - B - C)/2] | Sin(B+C)/2 = Sin(180 - A)/2 = Sin(90 - A/2) =
CosA/2
Now,
SinA/2 * Sin [(180-B-C)/2] + CosA/2 * Sin(B+C)/2
=> SinA/2 * SinA/2 + CosA/2 * CosA/2
=> Sin²A/2 + Cos²A/2
=> 1.