if (a+b+c)(ab+bc+ca)=abc then prove that (a+b+c)^3=a^3+b^3+c^3
Answers
Answer:
First we have:
(a+b+c)^3 = (a^3+b^3+c^3)
Split (a+b+c) out of (a+b+c)^3:
(a+b+c)(a+b+c)^2 = (a^3+b^3+c^3)
Expand (a+b+c)^2:
(a+b+c)(a^2 + 2ab + b^2+ 2bc + c^2 + 2ca) = (a^3+b^3+c^3)
Rearrange into two groups:
2(a+b+c)(ab + bc + ca) + (a+b+c)(a^2+b^2+c^2) = (a^3+b^3+c^3)
Split (a+b+c)(a^2+b^2+c^2) into components:
2(a+b+c)(ab + bc + ca) + (a+ b+c)(a^2) +(a+b+c)(b^2) + (a+b +c)(c^2) = (a^3+b^3+c^3)
Obtain the cubes:
2(a+b+c)(ab + bc + ca) + (b+c)(a^2) +a^3 +(a+c)(b^2)+b^3 + (a+b)(c^2)+c^3 = (a^3+b^3+c^3)
Rearrange the cubes out:
2(a+b+c)(ab + bc + ca) + (b+c)(a^2) +(a+c)(b^2) + (a+b)(c^2) + (a^3+b^3+c^3) = (a^3+b^3+c^3)
Subtract out the cubes:
2(a+b+c)(ab + bc + ca) + (ab+ca)(a) +(ab+bc)(b) + (bc + ca)(c) = 0
Add 3 abc’s to both sides.
2(a+b+c)(ab + bc + ca) + (ab+ca)(a) + abc +(ab+bc )(b) +abc + (bc + ca)(c) + abc = 0 + abc+ abc+ abc
Complete (ab+bc+ca) for the remainder of the terms:
2(a+b+c)(ab + bc + ca) + (ab+ca + bc)(a) +(ab+bc + ca )(b) + (ab + bc + ca)(c) + abc = 3abc
Combine the terms:
3(a+b+c)(ab+bc+ca) = 3abc
Divide both sides by 3:
(a+b+c)(ab+bc+ca) = abc