if a+b+c =abc,prove that (1+a^2)=(1-ab)(1-ac)
Answers
Answered by
0
Step-by-step explanation:
1/a^2 + 1/b^2 + 1/c^2 = 1/ab + 1/bc + 1/ca
1/a(1/a -1/b) + 1/b(1/b - 1/c) + 1/c(1/c -1/a) = 0
Multiplying by a^2b^2c^2
(b - a)/a^2b× a^2b^2c^2 = bc^2(b -a)
(c - b)/b^2c × a^2b^2 c2 = a^2c(c - b)
(a - c )/c^2a × a^2b^2c^2 = ab^2( a - c)
bc^2(b- a) +a^2c (c - b) + ab^2(a - c) = 0
This equation entails that this is true only when
b - a = 0. Or. b = a
c - b = 0. Or c = b
a - c = 0. Or. a = c
Therefore
a = b= c
Similar questions