Math, asked by sartutorials, 1 year ago

If A, B, C & D are angles of cyclic quadrilateral then prove that
COSA+cos B+ COSC + cos D = 0​

Answers

Answered by Anonymous
66

Question:

If A , B , C, D are the angles of a cyclic Quadrilateral taken in order, prove that CosA+CosB+CosC+CosD=0.

Solution:

A,B,C,D are angles of a cyclic quadrilateral .

Therefore,

A  + C  =  {180}^{°}  \\  \\  =  > C  =  {180}^{°}  - A  \\  \\

And

B  +  D =  {180}^{°}  \\  \\  =  > D =  {180}^{°}  - B

L.H.S

 =  > cosA  + cosB + cosC  + cosD\\ \\   =  > cosA  + cos B + cos( {180}^{°}  - A ) + cos {180}^{°}  - B  \\  \\  =  > cosA  + cosB  - cos  A  - cosB   \\  \\  =  > 0

= R.H.S

Hence, L.H.S=R.H.S

Similar questions