If a,b,c and d are in continued proportion, show that (a-b):(a+b)=(a-d):(a+2b+2c+d)
Answers
Answered by
0
B = k1* A
C = k2* B = k2 * k1 * A
D = k3* C = k3*k2 *B = k3*k2*k1*A
-------------------------------------
A - B = A(1-k1)
B - C = k1*A * (1-k2)
(A-B)^3 / (B-C)^3 = A^3*(1-k1)^3 /{ k1^3*A^3*(1-k2)^3}
= (1-k1)^3 / {k1^3 * (1-k2)^3 }
= [(1-k1)/k1]^3 * [1/(1-k2)]^3
= [ 1/k1 - 1]^3 * 1/(1-k2)^3
A/d = [(1-k1)/k1]^3 * [1/(1-k2)]^3
= [ 1/k1 - 1]^3 * 1/(1-k2)^3
anshumankanungp7xjpz:
what is k1
Similar questions