Math, asked by shreejadutta, 1 month ago

if a b c and d are in proportion prove that abcd(1/a²+1/b²+1/c²+1/d²)=a²+b²+c²+d²​

Answers

Answered by BrainlyPopularman
80

GIVEN :

• a,b,c and d are in proportion.

TO PROVE :

• abcd(1/a²+1/b²+1/c²+1/d²)=a²+b²+c²+d²

SOLUTION :

According to given condition –

\\\bf \implies\dfrac{a}{b}  =  \dfrac{c}{d} = k(const)\\

\\\bf \implies \: a= bk \:  \:  \& \:  \: c = dk\\

• Now let's take L.H.S. –

\\\bf  \: \:  =  \:  \:  abcd \left( \dfrac{1}{a^{2} } + \dfrac{1}{b^{2}}+ \dfrac{1}{c^{2}}+ \dfrac{1}{d^{2}} \right)\\

• Now put the values –

\\\bf  \: \:  =  \:  \:  (bk)b(dk)d \left( \dfrac{1}{(bk)^{2} } + \dfrac{1}{b^{2}}+ \dfrac{1}{(dk)^{2}}+ \dfrac{1}{d^{2}} \right)\\

\\\bf  \: \:  =  \:  \: b^{2} {d}^{2} k^{2}  \left( \dfrac{1}{(bk)^{2} } + \dfrac{1}{b^{2}}+ \dfrac{1}{(dk)^{2}}+ \dfrac{1}{d^{2}} \right)\\

\\\bf  \: \:  =  \:  \: b^{2} {d}^{2} k^{2}  \left[\dfrac{ {d}^{2} +  {d}^{2}  {k}^{2}  +  {b}^{2}  +  {b}^{2}  {k}^{2}  }{b^{2}k^{2}d^{2}} \right]\\

\\\bf  \: \:  =  \:  \:{d}^{2} +  {d}^{2}  {k}^{2}  +  {b}^{2}  +  {b}^{2}  {k}^{2}\\

\\\bf  \: \:  =  \:  \:{d}^{2} +{(dk)}^{2}  +  {b}^{2}  +  {(bk)}^{2}\\

\\\bf  \: \:  =  \:  \:{d}^{2} +c^{2}  +  {b}^{2}  +a^{2}\\

\\\bf  \: \:  =  \:  \:R.H.S.\\

\\\bf  \longrightarrow \:  \:  Hence \:  \: proved\\

Answered by ratandey1810
2

Answer:

Here is your answer mate please refer to the attachment.

Attachments:
Similar questions