Math, asked by pastamkrishna, 10 months ago

If a, b, c and d are positive integers with a x b x c = 200, b x c x d = 90, c x d x a = 54 and d x a x b = 48, the value of a x b x c x d is: explain​

Answers

Answered by MaheswariS
2

\textbf{Given:}

a{\times}b{\times}c=200

b{\times}c{\times}d=90

c{\times}d{\times}a=54

d{\times}a{\times}b=48

\textbf{To find:}

\text{The value of $a{\times}b{\times}c{\times}d$}

\textbf{Solution:}

\text{Consider,}

a{\times}b{\times}c=200

b{\times}c{\times}d=90

c{\times}d{\times}a=54

d{\times}a{\times}b=48

\text{Multiplying all these equations, we get}

a^3{\times}b^3{\times}c^3{\times}d^3=200{\times}90{\times}54{\times}48

a^3{\times}b^3{\times}c^3{\times}d^3=1000{\times}2{\times}9{\times}27{\times}2{\times}6{\times}8

a^3{\times}b^3{\times}c^3{\times}d^3=10^3{\times}2^3{\times}3^3{\times}3^3{\times}2^3

(a{\times}b{\times}c{\times}d)^3=10^3{\times}2^3{\times}3^3{\times}3^3{\times}2^3

\text{Taking cube root on bothsides, we get}

a{\times}b{\times}c{\times}d=10{\times}2{\times}3{\times}3{\times}2

\implies\,a{\times}b{\times}c{\times}d=360

\therefore\textbf{The value of $\bf\,a{\times}b{\times}c{\times}d$ is 360}

Similar questions