if a,b,c are a continued proportion, then prove that abc (a+b+c) whole cube= (ab+bc+ca)ka whole cube
Answers
abc(a + b + c)³ = (ab + bc + ca)³ if a,b,c are a continued proportion
Step-by-step explanation:
a,b,c are a continued proportion
=> b = ak
& c = bk = (ak)k = ak²
LHS
= abc(a + b + c)³
= a(ak)(ak²)(a + ak + ak²)³
= a³k³ a³(1 + k + k²)³
= a⁶k³(1 + k + k²)³
RHS
= (ab + bc + ca)³
= (aak + akak² + ak²a)³
= (a²k + a²k³ + a²k)³
= (a²k(1 + k² + k))³
= (a²k)³(1 + k + k²)³
= a⁶k³(1 + k + k²)³
LHS = RHS
QED
Proved
abc(a + b + c)³ = (ab + bc + ca)³
learn more:
If a,b,c,d are in continued proportion,prove that: a:d=triplicate ratio of ...
https://brainly.in/question/7514928
If p,q,r,s are in continued proportion prove that (p2+q2+r2)(q2+r2+s2 ...
https://brainly.in/question/8179054
a,b,c are a continued proportion
=> b = ak
& c = bk = (ak)k = ak²
LHS
= abc(a + b + c)³
= a(ak)(ak²)(a + ak + ak²)³
= a³k³ a³(1 + k + k²)³
= a⁶k³(1 + k + k²)³
RHS
= (ab + bc + ca)³
= (aak + akak² + ak²a)³
= (a²k + a²k³ + a²k)³
= (a²k(1 + k² + k))³
= (a²k)³(1 + k + k²)³
= a⁶k³(1 + k + k²)³
LHS = RHS
QED
Proved
abc(a + b + c)³ = (ab + bc + ca)³