If a b c are angle of triangle then prove that sin 2A + sin2B + sin2c is equals to 4 sin a sin b sin c
Answers
Answered by
4
Answer:
Step-by-step explanation:
A+B+C=180
LHS=sin2A+sin2B+sin2C
=2sin(A+B)cos(A−B)+2sinCcosC
=2sinCcos(A−B)+2sinCcosC
=2sinC(cos(A−B)+cosC)
=2sinC(cos(A−B)−cos(A+B))
=2sinC2sinAsinB
=4sinAsinBsinC
=RHS
Similar questions