Math, asked by PragyaTbia, 1 year ago

If A, B, C are angles in a triangle, then prove that cos 2A - cos 2B + cos 2C = 1 - 4 sin A cos B sin C.

Answers

Answered by MaheswariS
15

Answer:


Step-by-step explanation:


Formula used:

cosC-cosD=-2\:sin(\frac{C+D}{2}).sin(\frac{C-D}{2})\\sin2A=1-2{sin}^2C


cos2A-cos2B+cos2C

=-2\:sin(\frac{2A-2B}{2}).sin(\frac{2A+2B}{2})+1-2{sin}^2C

=-2\:sin(A-B).sin(A+B)+1-2{sin}^2C

=-2\:sin(A-B).sin(180-C)+1-2{sin}^2C

=-2\:sin(A-B).sinC+1-2{sin}^2C

=1-2sinC[sin(A-B)+sinC]


=1-2sinC[sin(A-B)+sin(180-(A+B))]


=1-2sinC[sin(A-B)+sin(A+B)]



=1-2sinC[2 sinA cosB]


=1- 4sinA cosB sinC

Answered by tvraolicin
0

Answer:

Formula used:

=1-2sinC[sin(A-B)+sinC]

=1-2sinC[sin(A-B)+sin(180-(A+B))]

=1-2sinC[sin(A-B)+sin(A+B)]

=1-2sinC[2 sinA cosB]

=1- 4sinA cosB sinC

Step-by-step explanation:

HOPE IT IS HELPFUL

Similar questions