If A,B,C are angles of a triangle and none of them is equal to pi/2. then prove that
tan A + tanB + tanC = tan A, tanB. tanC.
Answers
Answered by
6
Step-by-step explanation:
tan(180-ø)= -tanø
A+B+C=180
A+B=180-C
tan(A+B)=tan(180-C)
tanA+tanB/1-tanA.tanB= (-tanC)
tanA+tanB=(1-tanA.tanB)(-tanC)
tanA+tanB= 1×(-tanC) +tanA.tanB.tanC
tanA+tanB=tanA.tanB.tanC-tanC
tanA+tanB+tanC= tanA.tanB.tanC
hence proved
Note: tan(180-ø)= (-tanø)
Answered by
2
Step-by-step explanation:
tan(180-ø)=-tanø
A+B+C=180
A+B=180-C
tan(A+B)=tan180-c
tanA+tanB/-tanA . tanB =(-tanC)
tanA+tanB =(1-tanA . tanB).(-tanC)
tanA+tanB=1.(-tanC)+tanA.tanB.tanC
tanA+tanB+tanC=tanA.tanB.tanC
proved
______
_________
Similar questions