Math, asked by pavani903, 4 months ago


If A,B,C are angles of a triangle and none of them is equal to
then prove that
tanA + tanB + tanc = tanA. tanB. tanC.​

Answers

Answered by rashmikerketta1981
0

Answer:

ANSWER

→ (i) tanA+tanB++tanC

=

cosAcosB

sinAcosB+sinB+cosA

+tanC

cosBcosB

sin(A+B)

+

cosC

sinC

=

cosBcosA

sinC

+

cosC

sinC

(sinA−C=sinC)

=sinC(

cosAcosBcosC

cosC+cosAcosB

)

=sinC(

cosAcosBcosC

cos(π−(A+B))+cosAcosB

)

=sinC(

cosAcosBcosC

cosAcosB−cos(A+B)

)

=sinC(

cosAcosBcosC

cosAcosB−cosAcosB+sinAsinB

)

=

cosAcosBcosC

sinAsinBsinC

=tanAtanBtanC

(ii) cotAcotB=

tanAtanB

1

=

tanA+tanB+tanC

tanC

cotBcosC=

∑tanA

tanA

,cosAcosC=

∑tanA

tanB

⇒ Sum=

tanA+tanB+tanC

tanA+tanB+tanC

=1

Answered By

Pragyan

Similar questions