If A,B,C are angles of a triangle,show that:-sinBcos(C+A)+cosBsin(C+A)=0
Answers
Step-by-step explanation:
Step-by-step explanation:as A, B ,C are angles of a triangle so
Step-by-step explanation:as A, B ,C are angles of a triangle so A+B+C = 180
Step-by-step explanation:as A, B ,C are angles of a triangle so A+B+C = 180A+C= 180-B ____ eq1
Step-by-step explanation:as A, B ,C are angles of a triangle so A+B+C = 180A+C= 180-B ____ eq1put values from this eq1 into question
we get sinBcos(180-B)+cosBsin(180-B)
cos(180-A)= -cosa ,, sin(180-A) =sinA
so we can say
so we can saysinB(-cosB) + cosBsinB
so we can saysinB(-cosB) + cosBsinB-sinBcosB+sinBcosB
so we can saysinB(-cosB) + cosBsinB-sinBcosB+sinBcosB=0
so we can saysinB(-cosB) + cosBsinB-sinBcosB+sinBcosB=0hence proved
Step-by-step explanation:
Here is your answer hope it helps