Math, asked by harshjaingnt1580, 7 hours ago

If A, B, C are angles of a triangle then prove that
cos2A cos2B cos2C -4cosA.cosB.cosC-1

Attachments:

Answers

Answered by mathdude500
6

Appropriate Question

If A, B, C are angles of triangle ABC, prove that

\rm :\longmapsto\:cos2A + cos2B + cos2C  =   - 1 - 4cosAcosBcosC

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:A + B + C = \pi

So, Consider LHS

\rm :\longmapsto\:cos2A + cos2B + cos2C

We know that,

\boxed{\tt{ cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}

So, using this, we get

\rm \:  =  \: 2cos\bigg[\dfrac{2A + 2B}{2} \bigg]cos\bigg[\dfrac{2A - 2B}{2} \bigg] + cos2C

\rm \:  =  \: 2cos(A + B)cos(A - B) + cos2C

\rm \:  =  \: 2cos(\pi - C)cos(A - B) + cos2C

We know,

 \purple{\rm :\longmapsto\:cos(\pi - x) =  - cosx}

and

 \purple{\rm :\longmapsto\:\boxed{\tt{ cos2x =  {2cos}^{2}x - 1}}}

So, using these results, we get

\rm \:  =  \:  - 2cosCcos(A - B) + 2 {cos}^{2}C - 1

\rm \:  =  \:  - 2cosC\bigg[cos(A - B) - cosC\bigg] - 1

\rm \:  =  \:  - 2cosC\bigg[cos(A - B) - cos[\pi - (A + B)]\bigg] - 1

\rm \:  =  \:  - 2cosC\bigg[cos(A - B) +  cos(A + B)\bigg] - 1

 \rm \:  =  \:  - 2cosC[2cosA \: cosB] - 1

\rm \:  =  \:  - 1 - 4cosAcosBcosC

Hence,

\boxed{\tt{ \:cos2A + cos2B + cos2C  =   - 1 - 4cosAcosBcosC \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{ sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}

\boxed{\tt{ sinx  -  siny = 2sin\bigg[\dfrac{x  -  y}{2} \bigg]cos\bigg[\dfrac{x + y}{2} \bigg]}}

\boxed{\tt{ cosx - cosy = 2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{y - x}{2} \bigg]}}

\boxed{\tt{ 2sinxcosy = sin(x + y) + sin(x - y)}}

\boxed{\tt{ 2cosxcosy = cos(x + y) + cos(x - y)}}

\boxed{\tt{ 2sinxsiny = cos(x - y) - cos(x + y) \: }}

Answered by kingvo
0

Answer:

:( vk bhe I have a lot to do enquiry I am a Mar and the one who has

Similar questions