Math, asked by MokshaGadiya, 5 months ago

If A,B,C are angles of triangle such that x = cisA, y = cisB, z = cisC then find the value of x.y.z

Answers

Answered by ITZBFF
47

 \mathrm\red{Given : } \\

 \mathrm{A,  \: B,  \: C  \: are \:  the  \: angles \:  of \:  triangle} \\

 \mathrm{A +  B +  C = 180°} \\

 \mathrm\red{Also \: given : \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }  \\ \\   \mathsf{x = cis \: A,  \: y = cis \:  B,  \: z = cis  \: C } \\  \\  \mathrm{xyz \:  =  cis \: A.cis \:  B. cis  \: C \:  \:  \:  \:  \:  \:  \:  \:  \:   } \\ \\  \mathrm{ =  \: cis(A + B + C)} \\

 \mathrm{ =  \cos(A+B+C) \:  +  \: i \sin(A+B+C)} \\  \\  \mathrm{ =  \:  \cos \: 180 \:  +  \: i \sin 180} \\  \\  \mathrm{ =  \:  - 1 + 0} \\  \\  \mathrm{ =  - 1} \\  \\

 \boxed{ \mathrm \red{ \therefore \:  \: xyz \:  =  \:  - 1}}

Answered by OfficialPk
2

Step-by-step explanation:

\begin{gathered} \mathrm\red{Given : } \\ \end{gathered}

\begin{gathered} \mathrm{A, \: B, \: C \: are \: the \: angles \: of \: triangle} \\ \end{gathered}

\begin{gathered} \mathrm{A + B + C = 180°} \\ \end{gathered}

\begin{gathered} \mathrm\red{Also \: given : \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: } \\ \\ \mathsf{x = cis \: A, \: y = cis \: B, \: z = cis \: C } \\ \\ \mathrm{xyz \: = cis \: A.cis \: B. cis \: C \: \: \: \: \: \: \: \: \: } \\ \\ \mathrm{ = \: cis(A + B + C)} \\ \end{gathered}

\begin{gathered} \mathrm{ = \cos(A+B+C) \: + \: i \sin(A+B+C)} \\ \\ \mathrm{ = \: \cos \: 180 \: + \: i \sin 180} \\ \\ \mathrm{ = \: - 1 + 0} \\ \\ \mathrm{ = - 1} \\ \\ \end{gathered}

\boxed{ \mathrm \red{ \therefore \: \: xyz \: = \: - 1}}

Similar questions