Math, asked by bhanuprakash21016, 1 month ago

If a, b, c are any three integers then abc * (a ^ 3 - b ^ 3) * (b ^ 3 - c ^ 3) * (c ^ 3 - a ^ 3) is divisible by​

give me the correct answer with explanation i will make you brain list

Answers

Answered by jaiswalarpita220
0

Answer:

hii bro how are you

are u in class 11

bro please follow

Answered by ZaraAntisera
0

Answer:

\mathrm{Least\:Common\:Multiplier\:of\:}a,\:b,\:c,\:\cdot \left(a^3-b^3\right)\cdot \left(b^3-c^3\right)\cdot \left(c^3-a^3\right),\:by:\quad

a\left(a-b\right)\left(a^2+ab+b^2\right)b(b-c)(b^2+bc+c^2)c(c-a)(c^2+ac+a^2)y

Step-by-step explanation:

\left(a^3-b^3\right)\left(b^3-c^3\right)\left(c^3-a^3\right)

=\left(a-b\right)\left(a^2+ab+b^2\right)\left(b^3-c^3\right)\left(c^3-a^3\right)

=\left(a-b\right)\left(a^2+ab+b^2\right)\left(b-c\right)\left(b^2+bc+c^2\right)\left(c^3-a^3\right)

=\left(a-b\right)\left(a^2+ab+b^2\right)\left(b-c\right)\left(b^2+bc+c^2\right)\left(c-a\right)\left(c^2+ac+a^2\right)

\mathrm{Factor\:}by

b\cdot \:y

\mathrm{Multiply\:each\:factor\:with\:the\:highest\:power:}

a\cdot \left(a-b\right)\cdot \left(a^2+ab+b^2\right)\cdot \:b\cdot \left(b-c\right)\cdot \left(b^2+bc+c^2\right)\cdot \:c\cdot \left(c-a\right)\cdot \left(c^2+ac+a^2\right)\cdot \:y

Similar questions