Math, asked by tanmaytak2012, 1 year ago

if a,b,c are distinct positive real in H.P then the value of the expression b+a/b-a + b+c/b-c is

Answers

Answered by anjali962
9
.
.
.
i hope this helps u.
.
.
Mark me brainliest plz plz plz plz plz
Attachments:
Answered by VaibhavSR
0

Answer: 2

Step-by-step explanation:

  • If a,b and c are in H.P. then b=\frac{2ac}{a+c}
  • So, b+a=\frac{2ac}{a+c}+a

                    =\frac{a^{2}+ 3ac}{a+c}

       Similarly,b-a=\frac{-a^{2}+ ac}{a+c}

       And, b+c=\frac{2ac}{a+c}+c

                      =\frac{c^{2}+ 3ac}{a+c}

               b-c=\frac{-c^{2}+ ac}{a+c}

  • Now,putting the values of \frac{b+a}{b-a} +\frac{b+c}{b-c}

                 =\frac{\frac{a^{2}+3ac}{a+c}  }{\frac{-a^{2}+ac }{a+c}  } +\frac{\frac{c^{2}+3ac}{a+c}  }{\frac{-c^{2}+ac }{a+c}  }

                ={\frac{a^{2}+3ac}{-a^{2}+ac }  +{\frac{c^{2}+3ac}{-c^{2}+ac }

                =\frac{a(a+3c)}{a(c-a)}+\frac{c(c+3a)}{c(a-c)}

               =\frac{(a+3c)}{(c-a)}-\frac{(c+3a)}{(c-a)}

               =\frac{a+3c-c-3a}{(c-a)}

               =\frac{2(c-a)}{(c-a)}

              =2

  • Hence,on solving the above problem the result obtained is 2.

#SPJ2

Similar questions