Math, asked by sharanyalanka7, 1 month ago

If a, b, c are distinct real numbers, then the expression :-

is identically equal to:-

a) x² - (a + b + c) x + abc
b) x² + x - abc
c) x²
d) x

Note :- The expression is in attachment.


Attachments:

Answers

Answered by pulakmath007
26

SOLUTION

TO CHOOSE THE CORRECT OPTION

If a, b, c are distinct real numbers, then the expression

 \displaystyle \sf{f(x) \equiv \:  {a}^{2} \:   \frac{(x - b)(x - c) }{(a - b)(a - c)} +  {b}^{2} \:   \frac{(x - c)(x - a) }{(b - c)(b- a)} + {c}^{2} \:   \frac{(x - a)(x - b) }{(c - a)(c - b)}  }

is identically equal to:-

a) x² - (a + b + c) x + abc

b) x² + x - abc

c) x²

d) x

EVALUATION

Here the given expression is

 \displaystyle \sf{f(x) \equiv \:  {a}^{2} \:   \frac{(x - b)(x - c) }{(a - b)(a - c)} +  {b}^{2} \:   \frac{(x - c)(x - a) }{(b - c)(b- a)} + {c}^{2} \:   \frac{(x - a)(x - b) }{(c - a)(c - b)}  }

Clearly

 \displaystyle \sf{f(a)  =  \:  {a}^{2}  }

 \displaystyle \sf{f(b)  =  \:  {b}^{2}  }

 \displaystyle \sf{f(c)  =  \:  {c}^{2}  }

Also f(x) is a quadratic polynomial

Without any loss of generality we assume that

 \displaystyle \sf{f(x)  =  p {x}^{2} + qx + r  } \:  \:  \:  \:  -  -  -  - (A)

Thus we get

 \displaystyle \sf{  p {a}^{2} + qa+ r =  {a}^{2}    \:  \:  \:  -  -  -  - (1)}

 \displaystyle \sf{  p {b}^{2} + qb+ r =  {b}^{2}    \:  \:  \:  -  -  -  - (2)}

 \displaystyle \sf{  p {c}^{2} + qc+ r =  {c}^{2}    \:  \:  \:  -  -  -  - (3)}

Equation 1 - Equation 2 gives

 \displaystyle \sf{  p ({a}^{2} -  {b}^{2}  )+ q(a - b) =  {a}^{2} -  {b}^{2}     \:  }

 \displaystyle \sf{  \implies \:  p (a + b  )+ q = a + b   \:  \:  \:  \:  \: (  \: \because \: a - b  \neq \: 0 \:  )}

\displaystyle \sf{  \:  p (a + b  )+ q = a + b  } \:  \:  \:  -  -  - (4)

Equation 1 - Equation 3 gives

 \displaystyle \sf{   \:  p (a + c  )+ q = a + c   \:  \:  \:  -  -  - (5) }

Equation 4 - Equation 5 gives

 \displaystyle \sf{   \:  p (b -  c  ) = b - c   }

 \displaystyle \sf{   \implies \:  p = 1 \:  \:  \:  \:  \:  \: (  \: \because \: b - c  \neq \: 0 \:  )}

From Equation 5 we get

 \displaystyle \sf{   \:   (a + c  )+ q = a + c  }

 \displaystyle \sf{   \implies \:  q =0 }

From Equation 1 we get

\displaystyle \sf{  1. {a}^{2} + 0.a+ r =  {a}^{2}  }

\displaystyle \sf{  \implies {a}^{2}+ r =  {a}^{2}  }

\displaystyle \sf{  \implies  r =  0}

Putting p = 1 , q = 0 , r = 0 in Equation A we get

 \displaystyle \sf{f(x)  =  1. {x}^{2} + 0.x+ 0 }

 \displaystyle \sf{ \implies \: f(x)  =   {x}^{2} }

Thus we get

 \boxed{ \:  \:  \displaystyle \sf{  f(x)  =   {x}^{2} } \:  \: }

FINAL ANSWER

Hence the correct option is c)

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 1/2 is a root of the quadratic equation x²-mx-5/4=0 , then the value of m is?

https://brainly.in/question/21062028

2.Find the roots of the quadratic equation 6x2 +5x + 1 =0 by method of completing the squares.

https://brainly.in/question/30446963

3. Write a quadratic equation whose root are -4 and -5

https://brainly.in/question/24154410


amansharma264: Excellent
pulakmath007: Thank you Brother
MisterIncredible: Brilliant sir !
pulakmath007: Thank you Brother
Similar questions