if a,b,c are in A.P if the equation (b-c)x^2+(c-a)x+(a-b)=0 and 2 (c+a)x^2+(b+c)x=0 have a common root then a^2 c^2/b^4 is divisible by
Answers
Answered by
1
Answer:
Given a,b,c are in AP
2b=a+c
(b−c)x
2
+(c−a)x+(a−b)=0
(b−c)x
2
−(b−c)x−(a−b)x+(a−b)=0
(b−c)x(x−1)−(a−b)(x−1)=0
(x−1)[(b−c)x−(a−b)]=0
x=
b−c
a−b
,1
x=
a−b
a−b
(∵2b=a+cb−a=c−b)
x=1
Now 2(c+a)x
2
+(b+c)x=0
x[2(c+a)x+(b+c)]=0
x=0
x=
2.2b
−(b+c)
x=−
4b
b+c
Now
4b
−(b+c)
=1
−4b=b+c
5b=−c
a+c=2b
a−5b=2b
a=7d
c
2
−a
2
=25b
2
−49b
2
=−24b
2
b
2
−c
2
=b
2
−25b
2
=−24b
2
So,
c
2
−a
2
=b
2
−c
2
hence a
2
,c
2
,b
2
are in Ap
Similar questions