Math, asked by adwitiyadixit8, 7 hours ago

if a, b, c are in A.P. then prove that a^2(b+c), b^2(c+a), c^2(a+b) are in A.P.​

Answers

Answered by vishwa11747
1

Answer:

Step-by-step explanation:

∵a,b,careinAP

hence,(b−a)=(c−b)⟶(1)

(i) ∵b  

2

(c+a)−a  

2

(b+c)

=(b−a)(ab+bc+ca)

andc  

2

(a+b)−b  

2

(c+a)

=(c−b)(ab+bc+ca)

=(b−a)(ab+bc+ca)(from(1))

hence,b  

2

(c+a)−a  

2

(b+c)=c  

2

(a+b)−b  

2

(c+a)

∴a  

2

(b+c),b  

2

(c+a),c  

2

(a+b)arealsoinAP

(ii) ∵(c+a−b)−(b+c−a)

=2(a−b)

=−2(b−a)

and(a+b−c)−(c+a−b)

=2(b−c)

=−2(c−b)

=−2(b−a)(from(1))

hence(c+a−b)−(b+c−a)=(a+b−c)−(c+a−b)

∴(b+c−a),(c+a−b),(a+b−c)areinAP

(iii) ∵(ca−b  

2

)−(bc−a  

2

)

=(a−b)(a+b+c)

=−(b−a)(a+b+c)

and(ab−c  

2

)−(ca−b  

2

)

=(b−c)(a+b+c)

=−(c−b)(a+b+c)

=−(b−a)(a+b+c)(from(1))

hence,(ca−b  

2

)−(bc−a  

2

)=(ab−c  

2

)−(ca−b  

2

)

∴(bc−a  

2

),(ca−b  

2

),(ab−c  

2

)are in AP

Similar questions