Math, asked by Surya1811, 7 months ago

If a,b,c are in AP prove that bc - a^2, ca - b^2, ab - c^2 are in AP

Answers

Answered by supernova22
0

Answer:

Hope this answer helps you

Attachments:
Answered by battuadityarao
1

Answer:

\huge\bold\red{ANSWER}

Step-by-step explanation:

\large{\underline{\rm{\red{SOLUTION :}}}}

\implies if a,b,c are in AP then (b-a)=(c-b)

\implies from the second apply (b-a)=(c-b)

     \sf{(ca-b^2)-(bc-a^2)}

     \sf{(a-b)(a+b+c)}

     \sf{-(b-a)(a+b+c)}

 \sf{and\:(ab-c^2)-(ca-b^2)}

       \sf{(b-c)(a+b+c)}

      \sf{-(c-b)(a+b+c)}

from both equations

      \sf{(ca-b^2)-(bc-a^2)=(ab-c^2)-(ca-b^2)}

      \sf{therefore\: they\: are\: in\: AP}    

     

     

     

Similar questions