Math, asked by arnavladwa, 6 months ago

if a,b,c are in ap then prove 1/√b+√c,1//√c+√a,1/√a+√b are also in ap​

Answers

Answered by Bidikha
6

Given -

a, b and c are in A. P

To prove -

 \frac{1}{ \sqrt{b}  +  \sqrt{c} } \: ,  \frac{1}{ \sqrt{c}  +  \sqrt{a} } , \frac{1}{ \sqrt{a}  +  \sqrt{b} }  \: are \: in \: A. P

i. e

\frac{1}{ \sqrt{c}  +  \sqrt{a} }  -  \frac{1}{ \sqrt{b} +  \sqrt{c}  }  =  \frac{1}{ \sqrt{a}  +  \sqrt{b} }  -  \frac{1}{ \sqrt{c} +  \sqrt{a}  }

Solution -

a, b and c are in A. P

Then,

b-a=c-b...... 1)

Now,

L.H.S

 =  \frac{1}{ \sqrt{c} +  \sqrt{a}  }  -  \frac{1}{ \sqrt{b}  +  \sqrt{c} }

 =  \frac{( \sqrt{b} +  \sqrt{c}  ) - ( \sqrt{c}  +  \sqrt{a}) }{( \sqrt{c} +  \sqrt{a} )( \sqrt{b}   +  \sqrt{c}) }

 =  \frac{ \sqrt{b}  +  \sqrt{c}  -  \sqrt{c} -  \sqrt{a}   }{( \sqrt{c}  +  \sqrt{a})( \sqrt{b}  +  \sqrt{c} ) }

 =  \frac{ \sqrt{b}  -  \sqrt{a} }{( \sqrt{c} +  \sqrt{a})( \sqrt{b} +  \sqrt{c})    }

 =  \frac{( \sqrt{b}  -  \sqrt{a} )( \sqrt{b}  +  \sqrt{a})  }{( \sqrt{c} +  \sqrt{a} )( \sqrt{b} +  \sqrt{c} )( \sqrt{b}   +  \sqrt{a})  }

 =  \frac{( { \sqrt{b}) }^{2}   -  ({ \sqrt{a}) }^{2} }{( \sqrt{c} +  \sqrt{a} )( \sqrt{b}  +  \sqrt{c} )( \sqrt{b}  -  \sqrt{a})  }

 =  \frac{b - a}{( \sqrt{c}  +  \sqrt{a} )( \sqrt{b} +  \sqrt{c} )( \sqrt{b}   +  \sqrt{a} )}

R. H. S

 =  \frac{1}{ \sqrt{a}  +  \sqrt{b} } -  \frac{1}{ \sqrt{c}  +  \sqrt{a} }

 =  \frac{( \sqrt{c}  +  \sqrt{a}) - ( \sqrt{a} +  \sqrt{b})   }{( \sqrt{a}  +  \sqrt{b})( \sqrt{c}  +  \sqrt{a})  }

 =  \frac{ \sqrt{c} +  \sqrt{a}   -  \sqrt{a} -  \sqrt{b}   }{( \sqrt{a}  +  \sqrt{b})( \sqrt{c} +  \sqrt{a} )  }

 =  \frac{  \sqrt{c}  -  \sqrt{b} }{( \sqrt{a}  +  \sqrt{b})( \sqrt{c}   +  \sqrt{a}) }

 =  \frac{( \sqrt{c} -  \sqrt{b}  )( \sqrt{c} +  \sqrt{b} ) }{( \sqrt{a}  +  \sqrt{b})( \sqrt{c} +  \sqrt{a})( \sqrt{c}   +  \sqrt{b} )  }

 =  \frac{( { \sqrt{c} )}^{2} -  {( \sqrt{b} )}^{2}  }{( \sqrt{a} +  \sqrt{b})( \sqrt{c}  +  \sqrt{a})( \sqrt{c}  +  \sqrt{b}  )  }

 =  \frac{c - b}{( \sqrt{a}  +  \sqrt{b})( \sqrt{c }  +  \sqrt{a})( \sqrt{c}   +  \sqrt{b}  )}

 =  \frac{b - a}{( \sqrt{a} +  \sqrt{b} )( \sqrt{c}  +  \sqrt{a} )( \sqrt{c}   +  \sqrt{b}) } (by \: 1)

 =  \frac{b - a}{( \sqrt{c} +  \sqrt{a})( \sqrt{b } +  \sqrt{c} )( \sqrt{b}    +  \sqrt{a} ) }

L. H. S =R. H. S

Then,

 \frac{1}{ \sqrt{c}  +  \sqrt{a} }  -  \frac{1}{ \sqrt{b}  +  \sqrt{c} }  =  \frac{1}{ \sqrt{a}  +  \sqrt{b} }  -  \frac{1}{ \sqrt{c} +  \sqrt{a}  }

Therefore,

 \frac{1}{ \sqrt{b} +  \sqrt{c}  } , \frac{1}{ \sqrt{c}  +  \sqrt{a} } , \frac{1}{ \sqrt{a} +  \sqrt{b}  }  \: are \:  \: in \:  \: A. P

Similar questions