Math, asked by VanshikaSandhu, 1 month ago

if a b c are in ap then show that a^2(b+c) b^2(c+a) c^2(a+b) are also in ap

Answers

Answered by Anonymous
18

 \bold{∵a,b,c  \: are \:  in AP}

 \bold{hence,(b−a)=(c−b)⟶(1)}

 \bold{(i) ∵b^2 (c+a)−a^2 (b+c)}

 \bold{=(b−a)(ab+bc+ca)}

 \bold{and \:  c^2 (a+b)−b^2 (c+a)}

 \bold{=(c−b)(ab+bc+ca)}

 \bold{=(b−a)(ab+bc+ca)(from(1)}

{ \boxed{ \small \bold{hence,b^2 (c+a)−a^2 (b+c)=c^2 (a+b)−b^2 (c+a)}}}

 \small \bold{∴a^2(b+c),b^2 (c+a),c^2(a+b)are \: also \: in \: AP}

Similar questions