If a ,b ,c are in AP then show that (b+c)^2-a^2 , (c+a)^2-b^2 , (a+b)^2-c^2 are also in AP
Answers
Answer:
MARK AS BRAINLIEST
Step-by-step explanation:
Given: a,b,c are in AP
Since,a,b,c are in AP, we have a+c=2b....(i)
Now,(b+c)2−a2,(c+a)2−b2,(a+b)2−c2 will be in A.P.
If (b+c−a)(b+c+a),(c+a−b)(c+a+b),(a+b−c)(a+
b+c) are in AP
i.e. if b+c−a,c+a−b,a+b−c are in AP
[dividing by(a+b+c)]
if (b+c−a)+(a+b−c)=2(c+a−b)
If 2b=2(c+a−b)
if b=c+a−b
if a+c=2b which is true by (i)
Hence,(b+c)2−a2,(c+a)2−b2,(a+b)2−c2 are in A.P
Answer:
Given: a,b,c are in AP
Since,a,b,c are in AP, we have a+c=2b....(i)
Now,(b+c)
2
−a
2
,(c+a)
2
−b
2
,(a+b)
2
−c
2
will be in A.P.
If (b+c−a)(b+c+a),(c+a−b)(c+a+b),(a+b−c)(a+
b+c) are in AP
i.e. if b+c−a,c+a−b,a+b−c are in AP
[dividing by(a+b+c)]
if (b+c−a)+(a+b−c)=2(c+a−b)
If 2b=2(c+a−b)
if b=c+a−b
if a+c=2b which is true by (i)
Hence,(b+c)
2
−a
2
,(c+a)
2
−b
2
,(a+b)
2
−c
2
are in A.P
Step-by-step explanation:
huh here is your big ans
I hope this will help you ( ◜‿◝ )♡