Math, asked by Radhakrishn2, 1 year ago

if a,b,c are in are in a continued proportion the expression { a^2 +ab+b^2/b^2+bc+c^2 } can be simplified​

Answers

Answered by Anonymous
1

its obviously a^2/b^2

still

a^2 + b^2 + ab)/( b^2 + bc + c^2)

a^2/b^2 + 1+ a/b)/(1+ c/b + c^2/b^2)

a^2/b^2 +1 + a/b )/( 1+ b/a + b^2/a^2)

a^2 + b^2 + ab )a^2/( a^2 + ab + b^2)b^2

a^2/b^2

Answered by kavithks
0

Answer:

To Prove : (a+b+c)(a−b+c)=a  

2

+b  

2

+c  

2

 

Proof : a,b,c are in continued proportion.

∴            

b

a

​  

=  

c

b

​  

=k (let)

                                b=ck

                                a=bk=(ck)k =ck  

2

 

L.H.S. =(ck  

2

+ck+c)(ck  

2

−ck+c)

          =c  

2

(k  

2

+k+1)(k  

2

−k+1)

          =c  

2

[(k  

2

+1)  

2

−(k)  

2

]

          =c  

2

[k  

4

+2k  

2

+1−k  

2

]

          =c  

2

[k  

4

+k  

2

+1]

R.H.S. =c  

2

k  

4

+c  

2

k  

2

+c  

2

 

          =c  

2

[k  

4

+k  

2

+1]

L.H.S = R.H.S.

Step-by-step explanation:

radhe radhe

Similar questions