Math, asked by ItzTheGameChanger, 5 days ago

If a, b, c are in continued proportion and if a(b-c)=2b then (2(a+b))/a is equal to___.
Answer with full steps.​

Answers

Answered by vinayak8257
0

Answer is in the attachment please mark me as brainlists and follow me

Attachments:
Answered by anindyaadhikari13
10

SOLUTION:

Given That: a, b, c are in continued proportion.

This implies that:

 \rm \longrightarrow \dfrac{a}{b} =  \dfrac{b}{c}

 \rm \longrightarrow b \cdot b = a \cdot c

 \rm \longrightarrow {b}^{2} = ac

Now, we have:

 \rm \longrightarrow a \cdot(b - c) = 2 \cdot b

 \rm \longrightarrow ab - ac = 2b

 \rm \longrightarrow ab - {b}^{2}  = 2b \:  \:  \:  \:  \:  \:  \:  \: ( {b}^{2}  = ac)

 \rm \longrightarrow b(a -b)  = 2b

 \rm \longrightarrow a -b = 2

Now, we have:

 \rm =  \dfrac{2(a + b)}{a}

Can be written as:

 \rm =  \dfrac{(a - b)(a + b)}{a}  \:  \:  \:  \: \:  (a - b = 2)

 \rm =  \dfrac{ {a}^{2} -  {b}^{2}  }{a}

 \rm =  \dfrac{ {a}^{2} -ac}{a} \:  \:  \:  \:  \:  \: ( {b}^{2} = ac)

 \rm =  \dfrac{a(a -c)}{a}

 \rm =a - c

Therefore:

 \rm \longrightarrow \dfrac{2(a + b)}{a}  = a - c

★ Which is our required answer.

LEARN MORE:

If a : b and c : d are two ratios such that a : b : : c : d. Then the following results hold true.

1. Invertendo.

 \rm\longrightarrow b : a :  : d : c

2. Alternendo.

 \rm\longrightarrow a : c :  : b : d

3. Componendo.

 \rm\longrightarrow (a + b) : b:  : (c + d) : d

4. Dividendo.

 \rm\longrightarrow (a  -  b) : b:  : (c - d) : d

5. Componendo and dividendo.

 \rm\longrightarrow (a + b) : (a - b):  : (c  +  d) :(c - d)

6. Convertendo.

 \rm\longrightarrow a : (a - b):  :c:(c - d)

Similar questions