if a,b,c are in continued proportion,prove that (a+b+c) (a-b+c) = a²+b²+c²
Answers
Answered by
1
Step-by-step explanation:
given, that a,b,c are in continued proportion,
=> a:b:c
if, k be the proportionality constant,
then, = = k
=> a = bk and b = ck
so, a = (ck)*k
a = ck²
we need to prove that, (a+b+c) (a-b+c) = a²+b²+c²
we take the LHS = (a+b+c) (a-b+c)
= (ck²+ ck+ c)(ck²- ck+ c)
= c (k²+ k+ 1)*c(k²- k+ 1)
= c² (k²+ 1+ k)(k²+ 1 - k)
= c² [ (k²+ 1)² - k² ]
= c² [ (k²+ 1)² - k² ]
= c² [ k⁴ +2k²+ 1 - k² ]
= c² [ k⁴ +k²+ 1 ]
= (ck²)² +(ck)²+ c²
= a²+b²+c²
= RHS
=> LHS = RHS
Hence proved.
Similar questions