Math, asked by MistyKaur9749, 1 year ago

If a, b, c are in continued proportion, show:   a^\frac{1}{3} + b^\frac{1}{3}+ c^\frac{1}{3}= \frac{a}{b^2C^2} + \frac{b}{c2a^2} + \frac{c}{a^2b^2}

Answers

Answered by MaheswariS
0

Answer:


Step-by-step explanation:


concept:

a, b, c are said to be in continued proportion if a:b = b:c


given:

a, b, c are in continued proportion


then,

\frac{a}{b}=\frac{b}{c}\\\\b^2=ac


consider,

\frac{a}{b^2c^2}+\frac{b}{c^2a^2}+\frac{c}{a^2b^2}\\\\=\frac{a}{(ac)c^2}+\frac{b}{(ac)^2}+\frac{c}{a^2(ac)}\\\\=\frac{a}{(ac^3}+\frac{b}{(b^2)^2}+\frac{c}{a^3c}\\\\=\frac{a}{ac^3}+\frac{b}{b^4}+\frac{c}{a^3c}\\\\=\frac{1}{c^3}+\frac{1}{b^3}+\frac{1}{a^3}\\\\=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}


Similar questions