If a, b, c are in continued proportion,
show that:
a²+b²/b(a+c) =b(a+c) /b²+c²
Answers this..... i will mark it brainlest✔️✔️❓❔
Answers
Answered by
1
a, b and c are the continued proportion
a : b = b : c
⇒ a/b = b/c
⇒ b2 = ac
Now a/c = a2 + b2/b2 + c2
⇒ a(b2 + c2) = c(a2 + b2)
L.H.S. = a(b2 + c2) ⇒ a(ac + c2) ⇒ ac(a + c)
R.H.S. = c(a2 + b2) ⇒ c(a2 + ac) ⇒ ac(a + c)
L.H.S. = R.H.S. Hence proved.
Answered by
2
Step-by-step explanation:
Given,
a,b,c are in continued proportion.
We know that,
If a,b,c are in continued proportion, then
⇒ (a/b) = (b/c)
⇒ b² = ac ------ (1)
Given,
(a² + b²)/b(a + c) = b(a + c)/(b² + c²)
⇒ (a² + b²)(b² + c²) = b²(a + c)(a + c)
⇒ (a² + ac)(ac + c²) = ac(a + c)²
⇒ ac(a + c)(a + c) = ac(a + c)²
⇒ ac(a + c)² = ac(a + c)²
∴ LHS = RHS
Hope it helps!
Similar questions