Math, asked by vijayshankar668, 11 months ago

If a,b,c are interior angles of triangle and show that cos^2a/2+cos^2(b+c)/2=1

Answers

Answered by Anonymous
1

Solution

as,a,b,c are interior angles of triangle so,

a+b+c=180°

a=180°-(b+c)

=>a/2=90°-[(b+c)/2]

now...

l.h.s. =  \cos {}^{2} ( \frac{a}{2} )  +  \cos {}^{2} ( \frac{b + c}{2} )  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \cos {}^{2} ( \frac{a}{2} )  +   \sin {}^{2} (90 - ( \frac{b + c}{2} ) ) \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: =  \cos {}^{2} ( \frac{a}{2} )  +  \sin {}^{2} ( \frac{a}{2} )  = 1 = r.h.s.(proved)

Similar questions