Math, asked by ayushjha0813, 8 months ago

If a,b,c, are positive numbers such that abc=1 , the prove that a+b+c >=3 and 1/a + 1/b+ 1/c >=3
please solve then I can hit as brainlist​

Answers

Answered by rishabh1894041
0

Step-by-step explanation:

Given \: that \: \:  \:  \:  abc = 1 \\ A.M \geqslant G.M \\  \frac{a + b + c}{3}  \geqslant  {(abc)}^{ \frac{1}{3} }  \\ a + b + c \geqslant 3 \\  \\ G.M \geqslant H.M \\  {(abc)}^{ \frac{1}{3} }  \geqslant  \frac{ \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c} }{3}  \\  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c}  \leqslant 3 \\  \\ Hope \: it \: will \: help \: you \:

Similar questions