Math, asked by amriteshrami, 1 day ago

IF a b c are positive real no.'s State if this is True or False
Also, Give a Proper Explanation and show the working.
I will mark the Best Answer Brainliest

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:a > 0 \:  \: and \:  \: b > 0

and

\rm :\longmapsto\: {a}^{6} +  {b}^{6} \leqslant 12 {a}^{2} {b}^{2} - 64

can be rewritten as

\rm :\longmapsto\: {a}^{6} +  {b}^{6}  + 64 -  12 {a}^{2} {b}^{2}  \leqslant 0

\rm :\longmapsto\: {( {a}^{2}) }^{3} +  {( {b}^{2} )}^{3} +  {(4)}^{3} - 3( {a}^{2})( {b}^{2})(4) \leqslant 0

We know

\boxed{\tt{  {x}^{3}+{y}^{3}+{z}^{3}-3xyz =(x + y + z)( {x}^{2}+{y}^{2}+{z}^{2}-xy-yz - zx}}

So, using this identity, we get

 \rm( {a}^{2}+{b}^{2} + 4)( {a}^{4} +  {b}^{4} + 16 -  {a}^{2} {b}^{2} - 4 {b}^{2} - 4 {a}^{2}) \leqslant 0

Let we consider,

\red{\rm :\longmapsto\:{a}^{4} +  {b}^{4} + 16 -  {a}^{2} {b}^{2} - 4 {b}^{2} - 4 {a}^{2}}

can be rewritten as

\red{\rm \:  = \dfrac{1}{2}\bigg[2{a}^{4} + 2{b}^{4} + 32 -  2{a}^{2} {b}^{2} - 8 {b}^{2} - 8{a}^{2}\bigg]}

\red{\rm \:  = \dfrac{1}{2}\bigg[{a}^{4} +  {a}^{4}  + {b}^{4} +  {b}^{4}  + 16 + 16 -  2{a}^{2} {b}^{2} - 8 {b}^{2} - 8{a}^{2}\bigg]}

can be re-arranged as

\red{\rm \:  = \dfrac{1}{2}\bigg[({a}^{4} +  {b}^{4}  - 2{a}^{2} {b}^{2})+({b}^{4}  + 16- 8 {b}^{2}) + (16 +  {a}^{4}   - 8{a}^{2})\bigg]}

\red{\rm \:  = \dfrac{1}{2}\bigg[( {a}^{2}  -  {b}^{2})^{2} + {( {b}^{2} - 4) }^{2} +  {( {a}^{2}  - 4)}^{2}     \bigg]}

As sum of squares can never be negative.

\red{\rm \implies\:{a}^{4} +  {b}^{4} + 16 -  {a}^{2} {b}^{2} - 4 {b}^{2} - 4 {a}^{2} \geqslant 0}

[ Equality of zero holds when a = b = 2 ]

And if a and b are distinct, then

\red{\rm \implies\:{a}^{4} +  {b}^{4} + 16 -  {a}^{2} {b}^{2} - 4 {b}^{2} - 4 {a}^{2}  >  0}

and

 \red{\rm( {a}^{2}+{b}^{2} + 4)( {a}^{4} +  {b}^{4} + 16 -  {a}^{2} {b}^{2} - 4 {b}^{2} - 4 {a}^{2})  >  0}

So,

 \rm( {a}^{2}+{b}^{2} + 4)( {a}^{4} +  {b}^{4} + 16 -  {a}^{2} {b}^{2} - 4 {b}^{2} - 4 {a}^{2}) \geqslant 0

So, for the given statement,

\rm :\longmapsto\: {a}^{6} +  {b}^{6} \geqslant 12 {a}^{2} {b}^{2} - 64

So, we concluded that

If a = b = 2, then

\rm :\longmapsto\: {a}^{6} +  {b}^{6}  =  12 {a}^{2} {b}^{2} - 64

And

If a and b are distinct, then

\rm :\longmapsto\: {a}^{6} +  {b}^{6} >   12 {a}^{2} {b}^{2} - 64

So, given statement is partially true for a = b = 2 otherwise false.

Similar questions