If a, b,c are positive real numbers such that a+b+c=1, prove that (1 + 1/a) (1 + 1/b) (1 + 1/c) > 64
Answers
Answered by
0
Answer:
[(1+a)(1+b)(1+c)]
7
>7
7
a
4
b
4
c
4
i.e.,(1+∑a+∑ab+abc)>7(abc)
4/7
Since, AM>GM
a+b+c+≥3(abc)
1/3
ab+bc+ac≥3(a
2
b
2
c
2
)
1/3
Hence,
1+∑a+∑ab+abc≥1+3(abc)
1/3
+3(abc)
2/3
+abc1+∑a+∑ab+abc≥1+(abc)
1/3
+(abc)
1/3
+(abc)
1/3
+(abc)
2/3
+(abc)
2/3
+(abc)
2/3
+abc
So,
LHS≥7[1(abc)
1/3
(abc)
1/3
(abc)
1/3
(abc)
2/3
(abc)
2/3
(abc)
2/3
(abc)]
1/7
≥7[(abc)
9/3
(abc)]
1/7
≥7(abc)
4/7
Similar questions