Math, asked by vijayanand22, 1 year ago

If a,b,c are positive real numbers, then √a^-1 b ×√b^-1 c ×√c^-1 d is equal ?

(a) 1
(b)abc​


vijayanand22: hello

Answers

Answered by ᎷíssGℓαмσƦσυs
71

question..

=b/c/a/c

=(b/a×c/a/c)

=1

=1

this is your answer

please mark as brain list


vijayanand22: i think this not the right way
vijayanand22: but the answer is correct
vijayanand22: i marked as brainlist
vijayanand22: please clear my doubts
Answered by talasilavijaya
0

Answer:

\sqrt{a^{-1 }b} \times  \sqrt{b^{-1 }c} \times \sqrt{b^{-1 }a}=1

Step-by-step explanation:

Given a, b, c are positive real numbers.

and then \sqrt{a^{-1 }b} \times  \sqrt{b^{-1 }c} \times \sqrt{b^{-1 }a}

Using the law of indices, \sqrt{a}=a^\frac{1}{2}

\big(a^{-1 }b\big)^{\dfrac{1}{2}}  \times \big(b^{-1 }c\big)^{\dfrac{1}{2}}   \times \big(c^{-1 }a\big)^{\dfrac{1}{2}}

Using the law of indices, a^{m^n}=a^{mn}

a^{^{-\dfrac{1}{2}} }b^{^\dfrac{1}{2}}}  \times b^{^{-\dfrac{1}{2}} }c^{^\dfrac{1}{2}}}  \times c^{^{-\dfrac{1}{2}} }a^{^\dfrac{1}{2}}}

Grouping the like terms,

a^{^{-\dfrac{1}{2}} }a^{^\dfrac{1}{2}}}\times b^{^\dfrac{1}{2}}}   b^{^{-\dfrac{1}{2}} }\times c^{^\dfrac{1}{2}}}   c^{^{-\dfrac{1}{2}} }

Using the law of indices, a^{m}\times a^{n}=a^{mn}

a^{^{-\dfrac{1}{2} +\dfrac{1}{2}}}\times b^{^{-\dfrac{1}{2} +\dfrac{1}{2}}}\times c^{^{-\dfrac{1}{2} +\dfrac{1}{2}}}=a^{0}\times b^{0}\times c^{0}

Using the law of indices, a^{0}=1

1\times 1\times 1=1

Therefore, \sqrt{a^{-1 }b} \times  \sqrt{b^{-1 }c} \times \sqrt{b^{-1 }a}=1.

Hence, the correct answer is option a.

Similar questions