Math, asked by Anonymous, 9 months ago

If a,b,c are positive real numbers ,then the value of (ab)^log(a/b) × (bc)^log(b/c)× (ca)^log(c/a) =
correct answer will be marked as brainliest
A)0
B)-1
C)1
D)none of this​

Answers

Answered by vanshika5b
3

Step-by-step explanation:

Hope you understand

mark brainliest please

Attachments:
Answered by Dhruv4886
0

The correct answer is option (C) 1

Given:

a, b, c are positive real numbers

To find:

The value of  [ab^{log (\frac{a}{b}) } ] [ bc^{log(\frac{b}{c} )} ] [ ca^{log (\frac{c}{a}) } ]

Solution:

Let P = [ab^{log (\frac{a}{b}) } ] [ bc^{log(\frac{b}{c} )} ] [ ca^{log (\frac{c}{a}) } ]

apply ㏒ both sides

⇒ ㏒ P = ㏒ [ab^{log (\frac{a}{b}) } ] [ bc^{log(\frac{b}{c} )} ] [ ca^{log (\frac{c}{a}) } ]  

⇒ ㏒ P = ㏒ [ab^{log (\frac{a}{b}) } ] + ㏒ [ bc^{log(\frac{b}{c} )} ] + ㏒ [ ca^{log (\frac{c}{a}) } ]  

⇒ ㏒ P = ㏒ (\frac{a}{b})(ab) + ㏒ (\frac{b}{c} )(bc) +㏒ (\frac{c}{a})(ca)

⇒ ㏒ P = [㏒a - ㏒b][㏒a + ㏒b]+[㏒b - ㏒c][㏒b + ㏒c]+[㏒c - ㏒a][㏒c + ㏒a]  

⇒ ㏒ P = (㏒a)² - (㏒b)² + (㏒b)² - (㏒c)²+  (㏒c)²-  (㏒a)²  

⇒ ㏒ P = 0 =  ㏒ 1

⇒ P = 1  

The value of [ab^{log (\frac{a}{b}) } ] [ bc^{log(\frac{b}{c} )} ] [ ca^{log (\frac{c}{a}) } ] is 1

#SPJ2

Similar questions