Math, asked by guptaananya2005, 1 day ago

If a, b, c are real and positive then what is the minimum value of

 \frac{( {a}^{2}  + a + 1)( {b}^{2}  + b + 1)( {c}^{2}  +c  +1) }{abc}

Please don't spam.

Quality answer with all steps,

Answers

Answered by mathdude500
5

 \green{\large\underline{\sf{Solution-}}}

Given that

\rm :\longmapsto\:a > 0, \: b > 0, \: c > 0

and

The expression is

\rm :\longmapsto\:\dfrac{( {a}^{2} + a + 1)( {b}^{2} + b + 1)( {c}^{2} +c +1) }{abc}

can be rewritten as

\rm \:  =  \: \bigg[\dfrac{ {a}^{2}  + a + 1}{a} \bigg]\bigg[\dfrac{ {b}^{2}  + b + 1}{b} \bigg]\bigg[\dfrac{ {c}^{2} + c + 1}{c} \bigg]

\rm \:  =  \: \bigg[a + 1 + \dfrac{1}{a} \bigg]\bigg[b + 1 + \dfrac{1}{b} \bigg]\bigg[c + 1 + \dfrac{1}{c} \bigg]

can be further rewritten as

\rm \:  =  \: \bigg[a + \dfrac{1}{a} + 1 \bigg]\bigg[b + \dfrac{1}{b} + 1 \bigg]\bigg[c + \dfrac{1}{c}  + 1\bigg]

Now, we know that

\boxed{\tt{ \:  \:  \:  x  \:  \: +  \:  \:  \frac{1}{x}  \:  \: \geqslant  \:  \: 2 \:  \:  \:  \:  \:  \: if \:  \:  \: x > 0 \:  \:  \: }}

So, it means,

\red{\rm :\longmapsto\:a + \dfrac{1}{a}  \geqslant 2}

\red{\rm :\longmapsto\:b + \dfrac{1}{b}  \geqslant 2}

\red{\rm :\longmapsto\:c + \dfrac{1}{c}  \geqslant 2}

So, on substituting these values in above expression,

\rm \:   \geqslant   \: (2 + 1)(2 + 1)(2 + 1)

\rm \:   \geqslant   \: 3 \times 3 \times 3

\rm \:   \geqslant   \: 27

Hence,

 \green{\rm \implies\:\boxed{\sf{ \dfrac{( {a}^{2} + a + 1)( {b}^{2} + b + 1)( {c}^{2} +c +1) }{abc} \geqslant 27 \: }}}

So,

Minimum value

 \red{\rm \implies\:\boxed{\sf{ \dfrac{( {a}^{2} + a + 1)( {b}^{2} + b + 1)( {c}^{2} +c +1) }{abc}  =  27 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More

To prove that

\boxed{\tt{ \:  \:  \:  x  \:  \: +  \:  \:  \frac{1}{x}  \:  \: \geqslant  \:  \: 2 \:  \:  \:  \:  \:  \: if \:  \:  \: x > 0 \:  \:  \: }}

PROOF :-

Let us consider two positive real numbers x and 1/x.

We know, Arithmetic mean AM and Geometric mean GM are connected by the relationship

\red{\rm :\longmapsto\:AM \geqslant GM}

\rm :\longmapsto\:\dfrac{1}{2} \bigg[x + \dfrac{1}{x} \bigg] \geqslant  \sqrt{x \times \dfrac{1}{x} }

\rm :\longmapsto\:\dfrac{1}{2} \bigg[x + \dfrac{1}{x} \bigg] \geqslant  \sqrt{1 }

\rm :\longmapsto\:\dfrac{1}{2} \bigg[x + \dfrac{1}{x} \bigg] \geqslant  1

\bf\implies \:x + \dfrac{1}{x}  \geqslant 2

HENCE PROVED

Similar questions