Math, asked by papafairy143, 10 hours ago

If a, b, c are real distinct positive numbers such that a + b + c = 1, prove that

 \frac{(1 + a)(1 + b)(1 + c)}{(1 - a)(1 - b)(1 - c)}  > 8

Answers

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Given that

 \purple{\rm :\longmapsto\:a \:  \ne \: b \:  \ne \: c \:  >  \: 0}

And

\rm :\longmapsto\:a + b + c = 1

can be rewritten as

\rm :\longmapsto\:a  = 1 - b - c

On adding 1 on both sides, we get

\rm :\longmapsto\:1 + a  = 1 + 1 - b - c

can be re-arranged as

\bf :\longmapsto\:1 + a  = 1 - b + 1 - c -  -  - (1)

Now, we know relationship between Arithmetic mean (AM) and Geometric mean (GM)

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \: AM \:  \:  \geqslant  \:  \: GM \:  \: }}}

Now, (1 - b) and (1 - c) are two distinct real positive numbers so,

\rm :\longmapsto\:\dfrac{1 - b + 1 - c}{2} >  \sqrt{(1 - b)(1 - c)}

\bf\implies \:(1 - b) + (1 - c) > 2 \sqrt{(1 - b)(1 - c)}

On substituting this value in equation (1), we get

\bf\implies \:1 + a > 2 \sqrt{(1 - b)(1 - c)}  -  - (2)

Similarly,

\bf\implies \:1 + b > 2 \sqrt{(1 - a)(1 - c)}  -  - (3)

and

\bf\implies \:1 + c > 2 \sqrt{(1 - a)(1 - b)}  -  - (4)

On multiply equation (2), (3) and (4), we get

\rm :\longmapsto\:(1 + a)(1 + b)(1 + c) > 8(1 - a)(1 - b)(1 - c)

 \purple{\rm\implies \:\boxed{\tt{ \:  \:   \frac{(1 + a)(1 + b)(1 + c)}{(1 - a)(1 - b)(1 - c)} > 8 \:  \: }}}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

EXPLORE MORE

If and b are positive real numbers, then

1. Arithmetic mean (AM) between a and b is given by

 \purple{\rm :\longmapsto\:\boxed{\tt{ AM =  \frac{a + b}{2}}}}

2. Geometric mean (GM) between a and b is given by

 \purple{\rm :\longmapsto\:\boxed{\tt{ \:  \:  GM \:  =  \:  \sqrt{ab} \:  \: }}}

3. Harmonic mean (HM) between a and b is given by

 \purple{\rm :\longmapsto\:\boxed{\tt{ \:  \:  \: HM =  \frac{2ab}{a + b}  \:   \: \: }}}

4. Relationship between Arithmetic mean, Geometric mean and Harmonic mean

\boxed{\tt{ AM \geqslant GM \geqslant HM}} \\  \\ \boxed{\tt{  {GM}^{2} = AM \times HM}}

Similar questions