Math, asked by rajbetisingh1, 4 months ago

if a,b,c are real numbers and (a+b-5)^2+(b+2c+3)^2+(c+3a-10)^2=0 find the integer nearest to a^3+b^3+c^3.

Answers

Answered by amitnrw
1

Given : (a+b-5)²+(b+2c+3)²+(c+3a-10)²=0

a,b,c are real numbers

To Find : integer nearest to a³+b³+c³

Solution:

(a+b-5)²+(b+2c+3)²+(c+3a-10)²=0

Square of real number can not be negative

Hence

(a+b-5)²  =  (b+2c+3)²+ = (c+3a-10)² = 0

(a+b-5)²   = 0

=>  a + b = 5   Eq1

    b + 2c = - 3  Eq2

    c + 3a  = 10    Eq3

Eq1 - Eq2  =>  a - 2c  = 8

c + 3a  = 10  => 2c + 6a  = 20

=> 7a = 28

=> a = 4

     c = - 2

     b = 1

a³+b³+c³ = 4³  + 1³ + (-2)³  

= 64 + 1 - 8

= 57

Learn More:

(a+b+c)^2-100​

brainly.in/question/15889846

a+b+c=3 a^2+b^2+c^2=6 1/a+1/b+1/c=1 find values of a , b and c

brainly.in/question/8061154

Write 5 examples of the form (a + b + c)² and expand them using the ...

brainly.in/question/11762738

brainly.in/question/15889771

Similar questions