Math, asked by nihalpinisetti25, 2 months ago

if a,b,c are real numbers such that
a-7b+8c=4 and 8a+4b-c=7, then what is the value of a²-b²+c²?
correct answer will be marked brainliest​

Answers

Answered by mathdude500
7

\large\underline{\sf{Given- }}

\rm :\longmapsto\:a,b,c \:  \in \: R

such that

\rm :\longmapsto\:a - 7b + 8c = 4

\rm :\longmapsto\:8a + 4b - c = 7

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\: \: \boxed{ \sf{ \: {a}^{2} -  {b}^{2} +  {c}^{2} }}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a - 7b + 8c = 4

can be rewritten as

\rm :\longmapsto\:a + 8c = 4 + 7b

On squaring both sides, we get

\rm :\longmapsto\:(a + 8c)^{2}  = (4 + 7b)^{2}

We know,

\boxed{ \sf{ \: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}

On using this identity, we get

\rm :\longmapsto\: {a}^{2} +  {64c}^{2} + 16ac = 16 +  {49b}^{2} + 56b

\rm :\longmapsto\: {a}^{2} +  {64c}^{2} -  {49b}^{2} = 16  - 16ac + 56b -  - (1)

Again, Given that

\rm :\longmapsto\:8a + 4b - c = 7

can be rewritten as

\rm :\longmapsto\:8a - c = 7 - 4b

On squaring both sides, we get

\rm :\longmapsto\:(8a - c)^{2}  = (7 - 4b) ^{2}

We know,

\boxed{ \sf{ \: {(x -  y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy}}

\rm :\longmapsto\: {64a}^{2} +  {c}^{2}  - 16ac = 49 +  {16b}^{2} - 56b

\rm :\longmapsto\: {64a}^{2} +  {c}^{2} -  {16b}^{2} = 49  + 16ac  -  56b -  - (2)

Now,

Adding equation (1) and equation (2), we get

\rm :\longmapsto\: {65a}^{2} -  {65b}^{2} +  {65c}^{2} = 65

\rm :\longmapsto\: 65({a}^{2} -  {b}^{2} +  {c}^{2}) \: =  \: 65

\rm :\longmapsto\: {a}^{2} -  {b}^{2} +  {c}^{2}\: =  \: 1

Hence,

 \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \rm \rightarrow\:  \:  \underbrace{\boxed{ \bf{ \:{a}^{2} -  {b}^{2} +  {c}^{2}\: =  \: 1}}} \:  \:  \leftarrow

Additional Information : -

More Identities to know

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions