If a,b,c are real numbers such that a+b+c= 0 & a²+ b²+ c²= 1, find (3a+5b-8c)²+(-8a+3b+5c)²+(5a-8b+3b)².
Answers
Answered by
0
Answer:
147
Step-by-step explanation:
(3a+5b−8c)2=9a2+25b2+64c2+30ab−80bc−48ac
(−8a+3b+5c)2=64a2+9b2+25c2−48ab+30bc+−80ac
(5a−8b+3c)2=25a2+64b2+9c2−80ab−48bc+30ac
adding all three
=9+25+64+30(ab+bc+ca)−80(ab+bc+ca)−48(ab+bc+ca)
=98−98(ab+bc+ca)
=98−98(((a+b+c)2−a2−b2−c2)/2)
=98+49
=147
Similar questions